Immer auf dem neuesten Stand.

Ingo Feinerer

Details
Priv.-Doz. Dr. Dr. Ingo Feinerer
Fakultätsleitung
T: +43 (0) 2622 / 89 084 - 240

Ingo Feinerer @ Technische Universität Wien

Allgemein beeideter und gerichtlich zertifizierter Sachverständiger für 68.50 Softwaretechnik, Programmierung

Ausbildung

  • Privatdozent
    Lehrbefugnis (venia docendi) für Angewandte Informatik, Technische Universität Wien
  • Dr. rer. soc. oec.
    Betriebswirtschaft, Wirtschaftsuniversität Wien
  • Dr. techn.
    Informatik, Technische Universität Wien

Forschungsinteressen

  • Configuration
  • Databases
  • Data mining
  • R
  • Statistical computing
  • Text mining

Publikationen (Journalartikel)

Dag Elgesem, Ingo Feinerer, and Lubos Steskal. Bloggers' responses to the Snowden affair: Combining automated and manual methods in the analysis of news blogging. Computer Supported Cooperative Work, 25(2):167-191, 2016. [ DOI ]

Christopher D. Green and Ingo Feinerer. The evolution of The American Journal of Psychology 1, 1887-1903: A network investigation. The American Journal of Psychology, 128(3):387-401, 2015. [ DOI ]

Ingo Feinerer, Reinhard Pichler, Emanuel Sallinger, and Vadim Savenkov. On the undecidability of the equivalence of second-order tuple generating dependencies. Information Systems, 48:113-129, 2015. [ DOI ]

Ingo Feinerer, Enrico Franconi, and Paolo Guagliardo. Lossless selection views under conditional domain constraints. IEEE Transactions on Knowledge and Data Engineering, 27(2):504-517, 2015. [ DOI ]

Christopher D. Green, Ingo Feinerer, and Jeremy T. Burman. Searching for the structure of early American psychology: Networking Psychological Review, 1894-1908. History of Psychology, 18(1):15-31, 2015. [ DOI ]

Ingo Feinerer and Gernot Salzer. Numeric semantics of class diagrams with multiplicity and uniqueness constraints. Software & Systems Modeling, 13(3):1167-1187, 2014. [ DOI ]

Christopher D. Green, Ingo Feinerer, and Jeremy T. Burman. Beyond the schools of psychology 2: A digital analysis of Psychological Review, 1904-1923. Journal of the History of the Behavioral Sciences, 50(3):249-279, 2014. [ DOI ]

Ingo Feinerer. Efficient large-scale configuration via integer linear programming. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 27(1):37-49, 2013. [ DOI ]

Christopher D. Green, Ingo Feinerer, and Jeremy T. Burman. Beyond the schools of psychology 1: A digital analysis of Psychological Review, 1894-1903. Journal of the History of the Behavioral Sciences, 49(2):167-189, 2013. [ DOI ]

Kurt Hornik, Patrick Mair, Johannes Rauch, Wilhelm Geiger, Christian Buchta, and Ingo Feinerer. The textcat package for n-gram based text categorization in R. Journal of Statistical Software, 52(6):1-17, 2013. [ http ]

Kurt Hornik, Ingo Feinerer, Martin Kober, and Christian Buchta. Spherical k-means clustering. Journal of Statistical Software, 50(10):1-22, 2012. [ http ]

Stefan Theußl, Ingo Feinerer, and Kurt Hornik. A tm plug-in for distributed text mining in R. Journal of Statistical Software, 51(5):1-31, 2012. [ http ]

Angela Bohn, Ingo Feinerer, Kurt Hornik, and Patrick Mair. Content-based social network analysis of mailing lists. The R Journal, 3(1):11-18, 2011. [ .pdf ]

Andreas Falkner, Ingo Feinerer, Gernot Salzer, and Gottfried Schenner. Computing product configurations via UML and integer linear programming. International Journal of Mass Customisation, 3(4):351-367, 2010. [ DOI ]

Alexandros Karatzoglou and Ingo Feinerer. Kernel-based machine learning for fast text mining in R. Computational Statistics & Data Analysis, 54(2):290-297, 2010. [ DOI ]

Ingo Feinerer and Gernot Salzer. A comparison of tools for teaching formal software verification. Formal Aspects of Computing, 21(3):293-301, 2009. [ DOI ]

Ingo Feinerer, Kurt Hornik, and David Meyer. Text mining infrastructure in R. Journal of Statistical Software, 25(5):1-54, 2008. [ http ]

Ingo Feinerer. An introduction to text mining in R. R News, 8(2):19-22, 2008. [ http | .pdf ]


Fachhochschule Wiener Neustadt für Wirtschaft und Technik GmbH

Infocenter T: +43(0)2622/89 084-0 F: +43(0)2622/89 084-99

Bleiben Sie mit dem FH Newsletter immer am neuesten Stand.

Abonnieren Sie den FH Newsletter Jetzt abonnieren