I Stock 000000907067 Medium

Aerospace Engineering

Engineering for the realms of air and space is the ultimate innovation and testing ground for all aspects of engineering. The challenges dictated by the various aspects and differences of air and space are numerous. Construction of air and space craft, their propulsion, the multitude of applications make for a veritable playground for engineers. Applications of Aerospace Engineering range from aeronautics to space travel, communication technology, space experiments, as well as research pertaining to all of these.

The University of Applied Sciences Wiener Neustadt carries out research in the field of aerospace through its research subsidiary FOTEC, as well as through student projects; some initiated by students, some by the industry as well as other research institutions or by the European Space Agency (ESA). CubeSats, Unmanned Aerial Vehicles/Autonomous Aircraft, the use and implementation of state-of-the-art materials present a broad field of applications as well as areas to learn and develop. Numerous mission and project types are dedicated to space exploration, but some are purely based on commercial interests. The research in the field of aerospace addresses the following key topics:

  • Manufacturing processes & analysis of composites
  • Application & development of CubeSats
  • Development of space propulsion systems
  • Development of aviation concepts

For the implementation of research, a CubeSat Lab, an Experiment Lab for fluid mechanics, a Composite Lab and a Lab for development and qualification of propulsion systems and components are available.

Facilities available on site:

  • Small and large vibration tables
  • Shock testing facility
  • Thermal Vacuum Testing facility
  • Various vacuum chambers of different sizes
  • Photovoltaic test facility
  • ADCS testing facility
  • Helmholzcoil
  • Wind tunnel
  • RTM
  • Vacuum infusion
  • Workshop for the production of components made of fibre composites
  • Workshop for the production of mechanical components (incl. milling machine with extraction system)
  • Research laboratory for simulation validation of the manufacturing process, e.g. resin filling simulations

Research Activities

  • FOS-Sens-Add

    In this project, funded by the state of Lower Austria, distance determination in the µm range is to be developed using fiber optic sensor technology. FOTEC intends to use this sensor technology in thrust measurement balances for space applications.

  • DEEP

    The objective of this project, funded by the FFG under the COIN program "Aufbau", is to build R&D competence to expand test and analysis capabilities specifically for small satellite systems (CubeSat).

  • 4D Printing

    The objective of this ESA activity is to assess the reliability and functionality of 4D printing materials for space applications, to consider printed parts manufactured on Earth for use in space, but also those printed parts manufactured in space for space operations.


    The aim of this project, funded by the EU within the frame of H2020, is the development of electron sources using electrite material. FOTEC's task is to test an electron emitter with particularly low power for space applications.

  • elchemPP

    The RTI lead project elchemPP, which is funded by the state of Lower Austria, aims to improve the achievable surface qualities in 3D printing of metals and to reduce the post-processing costs. For this purpose, a novel and automatable (and thus acceptable for industrial production) electrochemical finishing process is to be acquired and tested.

  • Sci-FIT

    The aim of the project financed by the ESA SCIENCE department is to further develop and optimise the ion thruster developed by FOTEC for future ESA science missions (e.g. LISA, NGGM).

  • MetGlass

    The aim of this ESA project is to determine suitable methods for the production of components from so-called metallic glasses for space applications. FOTEC develops welding parameters for laser beam melting for the additive manufacturing of demonstrators.


    The aim of this ESA project is to develop and test a thin (<3 cm) in-plane variable emissivity spacecraft radiator with a size of 10x10 cm², suitable for cubesats. Within a consortium consisting of CSEM (project lead, CH), ENBIO (IE), Heron Engineering (GR), FOTEC is responsible for environmental tests of the developed radiator.


    This ESA project is concerned with the development of next generation Active Spacecraft POtential Control (ASPOC) devices, building on experience collected with an instrument built for the NASA MMS mission. Instead of single capillary emitters, porous crowns are used. FOTEC leads the project and develops the emitter modules, the space research institute (IWF) in Graz is responsible for the electronics.

  • InCubed

    The aim of this ESA project is to qualify the IFM nano and micro thrusters. FOTEC is responsible for further development of the power processing unit as well as for parts of the verifaction testing.

  • TESAT - RF

    In this ESA project, research is being carried out on HF components, which are produced additively. The aim is to increase the electrical power through new available geometries, to shorten the production and delivery time through higher integration and to reduce volume and mass through the integration of different functions (electrical, thermal, mechanical) in one part. The task of FOTEC is the revision of the design as well as the additive manufacturing of the components.

  • SpaceNDT

    The aim of this FFG project is to develop an error catalogue for additive polymer matrix composites and multi-material parts as well as to predict the influence of defects on service life by means of FEA simulation. FOTEC produces additive samples and supports the development of a simulation model.

  • NanoPPU100

    In this FFG-supported project, upgrade potential for the Indium Field Emission Electric Propulsion (FEEP) thruster developed by FOTEC and commercialised by ENPULSION will be investigated. A significant increase in power density necessitates development of modified electronics and thermal management solutions. Possibilities of manufacturing heat pipes with an additive manufacturing process will be investigated.

  • MFS

    The aim of this ESA project ist to develop and test concepts of integrating propellant storage functions into (primary) satellite structures exploitung advanced manufacturing techniques, such as additive manufacturing.

  • NEOSAT Phase C

    Through its NEOSAT project, ESA aims to help Europe's space industry become more competitive. The new communications satellite platform could reduce orbital operating costs by up to 30 percent compared to conventional satellites. FOTEC's task is to additively manufacture a bracket for a solar panel, whereby the focus is not only on additive manufacturing, but also on design and FEM-based simulation.

  • mN-FEEP 5

    The aim of this ESA project is to carry out a long-term test of an indium-FEEP thruster (> 30,000 hours) and to optimize the ion emitter technology.

  • ICEYE Propulsion Developments

    The aim of this ESA project is the development and characterization of a cluster of 7 individual Indium FEEP thruters to enable the adaptation of the orbit of microsatellites.

  • Thermoacoustic System Study

    In this ESA project, a system for thermoacoustic electricity generators for satellites was studied. In the consortium with Airbus Group Innovation (FR) and Hekyom (FR), led by Surrey Space Technologies Limited (SSTL, UK), FOTEC was responsible for system-level modelling and the development roadmap.

  • IFM Nano Thruster

    The aim of this ESA project is to design, build and test an indium FEEP thruster for CubeSats. Tests included environmental tests such as radiation tests as well as ion beam characterization.


    The aim of this ESA project is the design and manufacture of antenna components on satellites using additive manufacturing. This allows the components to be manufactured much lighter, more compact and without the screw connections that are still necessary today.

  • MH

    This ESA project aims at developing a hydrogen storage solution for a regenerative fuel cell system for satellites in cooperation with Prototech (Norway) and Thales Alenia (France). FOTEC is responsible for the development of the hydrogen storage system.


Koopmans, R.-J., Nandyala, V., Pavesi, S., Batonneau, Y., Maleix, C., Beauchet, R., Schwentenwein, M., Spitzbart, M., Altun, A., Scharlemann, C. (2019): Catalytic Effectivity of Printed Monolithic Structures with Hydrogen Peroxide – Modeling and Experimental Results. In: International Journal of Energetic Materials and Chemical Propulsion.
Seifert, B., Hörbe, T., Krejci, D. (2019): Optimization of the COTS-Based PPU for the IFM Nano Thruster. In: Presented at the 12th European Space Power Conference, Juan-les-Pins, France.
Buchner, C. (2018): Study of Thermoacoustic Electricity Generation for Communication Satellites. In: Presented at the Deutscher Luft- und Raumfahrtkongress 2018, Friedrichshafen, Germany.
Buchner, C., Pawelke, R.H., Schlauf, T., Reissner, A., Makaya, A. (2018): A new planetary structure fabrication process using phosphoric acid. In: Acta Astronautica.
Seifert, B., Buldrini, N., Hörbe, T., Plesescu, F., Reissner, A., Krejci, D., Friedhoff, P., Lai, S. (2018): In-Orbit Demonstration of the Indium-FEEP IFM Nano Thruster. In: Presented at the 6th Space Propulsion Conference, AAAF, Sevilla, Spain.


Feel free to contact us: FuE@fhwn.ac.at